4.2 Flächeninhaltsberechnung zwischen Kurve und x-Achse

Hauptsatz der Integralrechnung: Das Integral einer Funktion zwischen der unteren Grenze a und der oberen Grenze b wird mit Hilfe der Stammfunktion bestimmt:

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

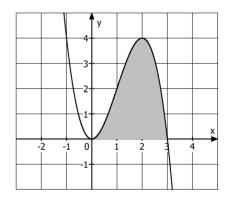
Geometrisch entspricht das Integral dem orientierten (d.h. vorzeichenbehafteten) Flächeninhalt zwischen der Funktion und der x-Achse.

Inhalte von Flächen **oberhalb** der x-Achse sind **positiv**, **unterhalb** der x-Achse sind **negativ**. Zur Berechnung dieses Flächeninhaltes müssen daher zunächst die Nullstellen der Funktion bestimmt werden.

Keine Nullstellen: Falls zwischen den Grenzen a und b keine Nullstellen existieren, berechnet man den Flächeninhalt mit dem oben angegebenen Hauptsatz der Integralrechnung.

Beispiel: Gegeben ist die Funktion f mit $f(x) = -x^3 + 3x^2$. Berechnen Sie den Inhalt der markierten Fläche.

$$\int_{0}^{3} -x^{3} + 3x^{2} = \left[-\frac{1}{4}x^{4} + x^{3} \right]_{0}^{3}$$
$$= -\frac{1}{4} \cdot 3^{4} + 3^{3} - \left(-\frac{1}{4} \cdot 0^{4} + 0^{3} \right) = 6,75$$



Flächen **unterhalb der x-Achse** führen zu einem negativen Ergebnis. Daher muss von dem Ergebnis noch der **Betrag** gebildet werden:

$$A = \left| \int_{a}^{b} f(x) dx \right|$$

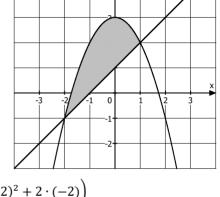
Eine oder mehrere Nullstellen: Falls es eine oder mehrere Nullstellen zwischen den Grenzen a und b gibt, müssen die Integrale getrennt berechnet werden. Anschließend werden von den einzelnen Ergebnissen wieder die Beträge gebildet. Der gesuchte Flächeninhalt ergibt sich durch Addition der einzelnen Beträge.

4.3 Flächeninhaltsberechnung zwischen zwei Kurven

Hierzu müssen zunächst die Schnittpunkte der Schaubilder bestimmt werden. Die x-Koordinaten dieser Schnittpunkte bilden die Grenzen a und b. Anschließend wird das Integral der Differenzfunktion f(x) - g(x) gebildet.

$$A = \int_{a}^{b} f(x) - g(x) \, dx$$

Beispiel: Die Schaubilder der Funktionen f mit $f(x) = -x^2 + 3$ und g mit g(x) = x + 1 schließen eine Fläche ein. Berechnen Sie deren Inhalt.



$$A = \int_{-2}^{1} -x^2 + 3 - (x+1) dx$$

$$= \int_{-2}^{1} -x^2 - x + 2 dx = \left[-\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x \right]_{-2}^{1}$$

$$= -\frac{1}{3} \cdot 1^3 - \frac{1}{2} \cdot 1^2 + 2 \cdot 1 - \left(-\frac{1}{3} \cdot (-2)^3 - \frac{1}{2} \cdot (-2)^2 + 2 \cdot (-2) \right)$$

$$= 4,5$$

Eine oder mehrere Schnittstellen: Falls es eine oder mehrere Schnittstellen zwischen den Grenzen a und b gibt, müssen die Integrale **getrennt berechnet** werden. Anschließend werden von den einzelnen Ergebnissen wieder die Beträge gebildet. Der gesuchte Flächeninhalt ergibt sich durch Addition der einzelnen Beträge.