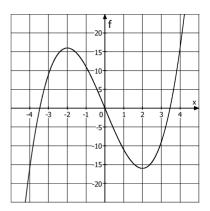
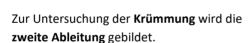
3.3 Monotonie und Krümmung


Eine Funktion, die mit zunehmendem x-Wert größer wird, heißt streng monoton steigend. Entsprechend heißt eine Funktion, die mit zunehmendem x-Wert kleiner wird, streng monoton fallend.

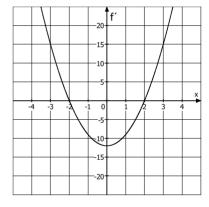
Die Monotonie einer Funktion lässt sich mit Hilfe ihrer ersten Ableitung bestimmen.

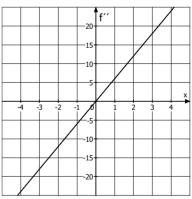
Zur Bestimmung der Krümmung (links- oder rechtsgekrümmt) untersucht man die zweite Ableitung.

Funktion	erste Ableitung	zweite Ableitung
f(x)	f'(x)	$f^{\prime\prime}(x)$
streng monoton steigend	f'(x) > 0	
streng monoton fallend	f'(x) < 0	
linksgekrümmt	streng monoton steigend	$f^{\prime\prime}(x) > 0$
rechtsgekrümmt	streng monoton fallend	$f^{\prime\prime}(x)<0$


Beispiel: Untersuchen Sie Funktion bzw. Schaubild von $f(x)=x^3-12x$ auf Monotonie und Krümmung.

Zur Untersuchung der **Monotonie** wird die **erste Ableitung** gebildet.


Die Funktion ist streng monoton steigend für $f'(x) = 3x^2 - 12 > 0$, also für die Bereiche x < -2 und x > 2.


Die Funktion ist streng monoton fallend für $f'(x) = 3x^2 - 12 < 0$, also für den Bereich -2 < x < 2.

Das Schaubild ist linksgekrümmt für f''(x) = 6x > 0, also für den Bereich x > 0.

Das Schaubild ist rechtsgekrümmt für f''(x) = 6x < 0, also für den Bereich x < 0.

3.4 Nullstellen, Extrempunkte und Wendepunkte

Bedingungen

Nullstelle: f(x) = 0

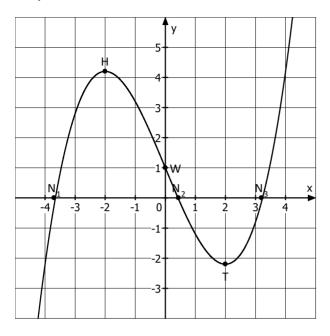
Hochpunkt (H): 1. f'(x) = 0

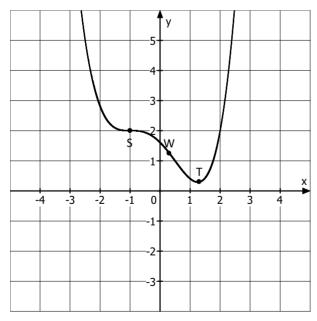
2. f''(x) < 0 (bzw. Nullstelle von f' mit VZW von + nach -)

Tiefpunkt (T): 1. f'(x) = 0

2. f''(x) > 0 (bzw. Nullstelle von f' mit VZW von - nach +)

Wendepunkt (W): 1. f''(x) = 0


2. $f'''(x) \neq 0$ (bzw. Nullstelle von f'' mit VZW)


Sattelpunkt (S): 1. f''(x) = 0

2. $f'''(x) \neq 0$ (bzw. Nullstelle von f'' mit VZW)

3. f'(x) = 0

Beispiele

